
Micro-virtualization vs Software Sandboxing
A Comparison



2

This document briefly compares Bromium micro-virtualization with other techniques
used in the security industry, in particular software sandboxes. It concludes that software 
sandboxes will always be vulnerable to attack, and makes the case that the Bromium 
architecture offers a quantum leap forward both in protection and detection, forensics
and live analysis of ongoing attacks.

Micro-virtualization
Bromium vSentry relies on 
hardware isolation for tasks 
that are untrustworthy – those 
that involve code or data from 
some external system that is 
being processed locally, such as 
browser tabs, documents and 
media. These hardware-isolated 
tasks are called micro-VMs 
and they protect the operating 
system and other tasks from 
compromise by malware that 
executes in a micro-VM. Valuable data, networks and devices are not available in a micro-
VM, and no matter what malware does to the micro-VM, including arbitrary escalation 
of privileges and manipulation of the OS and system state, no changes are reflected
back on the operating system or its file system, preventing attack persistence. Upon the
termination of the task, the micro-VM and its contents (and changes) is simply discarded, 
including all malware. This represents a major step forward in securing computer systems 
because unlike any software based isolation, the protection in vSentry is afforded by the
CPU itself. This document contrasts the different approaches used by security vendors to
prevent attacks, highlighting the differences between micro-virtualization and the state
of-the-art in the industry today.

Methods for Protection
There are three ways to protect an endpoint under attack:

1.	Detect and then block the attack within the OS, by foiling its attempts to access system
resources, the moment the attack is detected. This is the approach taken by the current
state-of-the art of endpoint security software. It presumes that the detection of malware
will be successful, which is problematic in the context of today’s advanced polymorphic
attacks – for which detection rates are extremely low. It also necessitates post-attack
remediation: even if the attack is blocked, the system must be cleaned of malware –
perhaps even to the extent of re-imaging the system.

2.	Sandbox the attack using an application-specific or more general purpose software
sandbox. (This link offers a full description of sandboxing, including its limitations). In
summary, sandboxes attempt to limit the ability of an untrusted user space process to
enter the OS kernel using a software replacement for all system calls and other access
methods for the kernel. Sandboxes typically have a very broad interface to protect –
for example Microsoft® Windows offers more than 2,000 system calls as well as many
OS service interfaces and interprocess communication methods, all of which must be
intercepted. As a result a sandbox must necessarily rely on millions of lines of additional
(potentially vulnerable) code. For example the Google® Chrome sandbox counts
approximately 1.5 million lines of code, and has been developed over a period of 12
years. Application sandboxes are extraordinarily complicated, and frequently exploited –
for example the recently documented flaws in the Java® 7 virtual machine.

http://blogs.bromium.com/2012/09/26/still-dreaming-of-perfect-code/
http://krebsonsecurity.com/2012/08/java-exploit-leveraged-two-flaws/


3

Application sandboxes are usually application specific or require substantial porting of 
an application in order to function correctly. For example Sandboxie offers fairly general 
purpose characteristics, but the applications must be re-installed in the sandbox, and 
the user experience is modified. Moreover they conflict with enterprise application 
delivery technologies such as Microsoft® App-V, VMware® Thinstall and Citrix Application 
Virtualization. Ultimately one should expect key applications and application vendors 
to adopt app virtualization to simplify delivery, making general purpose application 
virtualization increasingly difficult to manage.

Application sandboxes are typically very poorly instrumented – focused on interception, 
and not delivering insight to security teams about how tasks are being attacked, by 
whom, and in what ways. Ultimately the information that can be gained within a sandbox 
is no better than could be gained using AV software. Application sandboxes do not permit 
introspection, nor do they offer insights into the origins, targets and methods of an 
attack.

Both (1) and (2) above are vulnerable to human frailties, with catastrophic consequences: 
When the detector fails to detect, or when malware finds a way to escape from
the sandbox and enters the kernel, perhaps through a zero day, the system will be 
completely compromised.

3.	The third, and only viable approach for defeating advanced malware, is micro-
virtualization. The Microvisor isolates an entire task within a micro-VM, using Intel VT to
hardware isolate the execution of the task, protecting the OS, the network infrastructure,
and all valuable data from malware. This of course raises the question “What is a task in
the Bromium architecture, and why is it a superior isolation construct?” We address
this in more detail below.

Whitepaper: Micro-virtualization vs Software Sandboxing

http://en.wikipedia.org/wiki/Sandboxie


4

Micro-virtualization and Definition of a Tas
vSentry defines a task to be the most granular unit of computation, initiated on behalf
of a user, that can completely and successfully execute with the least possible resource 
access. Resources here mean files, network services, the clipboard, interaction with the
user, or any devices or network shares. In vSentry, user tasks are typically:

›	 Document centric: The task involves all processing related to the document, both user 
space and kernel. In general for documents, communication with other systems is not 
permitted unless specific policies override this (for example a spreadsheet might need 
data from an Intranet based Sharepoint site, but a PDF doc doesn’t need access to an 
external site).

›	 Web centric: The TLD of the URL uniquely identifies the task. If a micro-VM for the TLD 
already exists, then additional processing for all URLs within that TLD will be executed 
within the existing micro-VM, otherwise a new micro-VM is created. (There is an exception: 
DOMs with a Meta NOFRAMES tag are injected into a new micro-VM, for security reasons.)

A micro-VM isolates all computation for a single task – both kernel and user space. All 
execution within a micro-VM is copy-on-write against the IT-provisioned system image – 
both the in-memory image of Windows and the “golden file system” containing windows
and applications provisioned for the user.

Since our goal is to always protect the system – by design, and then also to deliver 
complete live forensics in real-time for ongoing attacks, it is crucial that the architecture 
isolate all computation for the task – both user and kernel space activity. This allows 
vSentry to protect the system from any changes made by malware – whether or 
not the malware is detected. It also allows us to ensure that no access to privileged 
data, networks or resources is possible either in user space or in the kernel, for an 
untrustworthy task. So, when malware escapes from an application sandbox and then 
compromises the kernel, vSentry will both protect the system and deliver real time 
forensics. vSentry’s ability to provide live attack visualization and analysis depends on 
an ability to introspect not just user space execution, but also to fully observe all kernel 
activity for each task. For example

›	 A DNS query by a PDF document seeking to resolve the address of a remote botnet C&C, 
or even the attempted transmission of a datagram that is directly addressed to some 
Internet site.

›	 Every process spawned by the task

›	 Every file opened, saved or read by the task and any attempt to access raw storage 
devices

›	 Every attempt to access the clipboard

›	 Every system call and process creation, including those blocked by Microsoft patchguard, 
which invalidates many of the hooks used by “in-OS” detection schemes, including all 
application sandboxes.

›	 Every registry access

Moreover, since the micro-VM executes CoW, if it modifies kernel memory or overwrites
a file in the golden image, these changes are specifically and separately saved withi
the micro-VM. In short, every change made to any system state from the moment a task 
starts until it ends, is recorded, with a timeline of changes.



Micro-VM Introspection vs In-OS Inspection
Introspection is only possible from a hypervisor, and the Bromium microvisor is a special purpose 
hypervisor. Introspection of a legacy OS-VM is nearly impossible – there are too many concurrent 
activities in the VM, making it impossible to detect which process made which changes. But in 
the narrow confines of a micro-VM that contains only a single running task, introspection afford
profound insights that are simply not available to in-OS detection tools, including sandboxes.

Finally, the protection afforded by a micro-VM is so substantial that it requires malware to break the
CPU in order to compromise the system. The entire code base of the microvisor and all code that 
could be exploited by malware in an attempt to escape the micro-VM containment, is O(100KLOC). 
And even if this code is compromised, the system is designed to fail safe – untrustworthy tasks may 
not execute, but the user will still have full access to their IT provisioned LOB applications, and will 
have the full protection of traditional AV. By contrast, any failure to detect, on the part of AV, or any 
break out from the sandbox will cause complete system compromise. The Bromium architecture is 
designed assuming compromise.

Conclusion
Micro-virtualization and three additional capabilities of the Bromium solution allow it to offer
protection that is tens of thousands of times better than any existing protection mechanism – 
essentially making it too expensive for an attacker:

›	 Hardware isolation: drastically reduces the code base required for isolation. To break the isolation 
container, malware needs to break Intel VT.

›	 Task isolation in micro-VMs: Protects the kernel and user space execution resulting from any initiated 
user activity, guaranteeing that even if malware gets into the kernel, it will certainly be defeated.

›	 Micro-VM Introspection: affords insights that are not available to in-OS detection methods, by taking 
advantage of the hypervisor’s privileged role in the system. This permits live attack visualization and 
analysis without false positives, and provides a full kill-chain for forensic analysis, including signature 
generation for malware payloads.

Bromium HQ
20813 Stevens Creek Blvd, Suite 150
Cupertino, CA 95014
info@bromium.com
+1.408.598.3623

Whitepaper: Micro-virtualization vs Software Sandboxing

Bromium UK Ltd
Lockton House
2nd Floor, Clarendon Road
Cambridge CB2 8FH
+44 1223 314914 Copyright ©2013 Bromium, Inc. All rights Reserved.

#Bromium-ds-vSentry-0313

For more information refer to www.bromium.com, 
contact sales@bromium.com or call at 1-800-518-0845


